2,635 research outputs found

    A summary of the application of active controls technology in the ATT system studies

    Get PDF
    The application of active controls technology to subsonic, long-range transport aircraft was investigated in three Advanced Transport Technology system studies. Relaxed stability requirements, maneuver and gust load alleviation, and active flutter suppression were the concepts considered. A different configuration was investigated for each of the three airframe manufacturers, and each had a somewhat different approach to the application of active controls technology. Consequently, the results varied in magnitude between the contractors, but several trends were noted. Relaxed stability requirements resulted in the largest benefits - reduced weight, increased return on investment, and decreased direct operating costs. Maneuver load alleviation, gust load alleviation, and flutter suppression resulted in much smaller benefits. Prior to application of active controls technology, a research and development program directed toward fulfilling data base requirements, establishing effective design techniques and criteria, improving systems maintainability and reliability, and demonstrating technology readiness must be completed

    Energy efficient transport technology: Program summary and bibliography

    Get PDF
    The Energy Efficient Transport (EET) Program began in 1976 as an element of the NASA Aircraft Energy Efficiency (ACEE) Program. The EET Program and the results of various applications of advanced aerodynamics and active controls technology (ACT) as applicable to future subsonic transport aircraft are discussed. Advanced aerodynamics research areas included high aspect ratio supercritical wings, winglets, advanced high lift devices, natural laminar flow airfoils, hybrid laminar flow control, nacelle aerodynamic and inertial loads, propulsion/airframe integration (e.g., long duct nacelles) and wing and empennage surface coatings. In depth analytical/trade studies, numerous wind tunnel tests, and several flight tests were conducted. Improved computational methodology was also developed. The active control functions considered were maneuver load control, gust load alleviation, flutter mode control, angle of attack limiting, and pitch augmented stability. Current and advanced active control laws were synthesized and alternative control system architectures were developed and analyzed. Integrated application and fly by wire implementation of the active control functions were design requirements in one major subprogram. Additional EET research included interdisciplinary technology applications, integrated energy management, handling qualities investigations, reliability calculations, and economic evaluations related to fuel savings and cost of ownership of the selected improvements

    Modeling the impact of iron and phosphorus limitations on nitrogen fixation in the Atlantic Ocean

    Get PDF
    International audienceThe overarching goal of this study is to simulate subsurface N* (sensu, Gruber and Sarmiento, 1997) anomaly patterns in the North Atlantic Ocean and determine the basin wide rates of N2 fixation that are required to do so. We present results from an Atlantic implementation of a coupled physical-biogeochemical model that includes an explicit, dynamic representation of N2 fixation with light, nitrogen, phosphorus and iron limitations, and variable stoichiometric ratios. The model is able to reproduce nitrogen, phosphorus and iron concentration variability to first order. The latter is achieved by incorporating iron deposition directly into the model's detritus compartment which allows the model to reproduce sharp near surface gradients in dissolved iron concentration off the west coast of Africa and deep dissolved iron concentrations that have been observed in recent observational studies. The model can reproduce the large scale N* anomaly patterns but requires relatively high rates of surface nitrogen fixation to do so (1.8×1012 moles N yr?1 from 10° N?30° N, 3.4×1012 moles N y

    Electric Flight Systems

    Get PDF
    Materials illustrating presentations on the development of electric flight systems for the all-electric aircraft and for spacecraft are presented

    Entanglement, fidelity, and quantum-classical correlations with an atom walking in a quantized cavity field

    Full text link
    Stability and instability of quantum evolution are studied in the interaction between a two-level atom with photon recoil and a quantized field mode in an ideal cavity, the basic model of cavity quantum electrodynamics (QED). It is shown that the Jaynes-Cummings dynamics can be unstable in the regime of chaotic walking of the atomic center-of-mass in the quantized field of a standing wave in the absence of any kind of interaction with environment. This kind of quantum instability manifests itself in strong variations of reduced quantum purity and entropy, correlating with the respective classical Lyapunov exponent, and in exponential sensitivity of fidelity of quantum states to small variations in the atom-field detuning. The connection between quantum entanglement and fidelity and the center-of-mass motion is clarified analytically and numerically for a few regimes of that motion. The results are illustrated with two specific initial field states: the Fock and coherent ones. Numerical experiments demonstrate various manifestations of the quantum-classical correspondence, including dynamical chaos and fractals, which can be, in principle, observed in real experiments with atoms and photons in high finesse cavities

    Shock-Wave Heating Model for Chondrule Formation: Prevention of Isotopic Fractionation

    Get PDF
    Chondrules are considered to have much information on dust particles and processes in the solar nebula. It is naturally expected that protoplanetary disks observed in present star forming regions have similar dust particles and processes, so study of chondrule formation may provide us great information on the formation of the planetary systems. Evaporation during chondrule melting may have resulted in depletion of volatile elements in chondrules. However, no evidence for a large degree of heavy-isotope enrichment has been reported in chondrules. In order to meet this observed constraint, the rapid heating rate at temperatures below the silicate solidus is required to suppress the isotopic fractionation. We have developed a new shock-wave heating model taking into account the radiative transfer of the dust thermal continuum emission and the line emission of gas molecules and calculated the thermal history of chondrules. We have found that optically-thin shock waves for the thermal continuum emission from dust particles can meet the rapid heating constraint, because the dust thermal emission does not keep the dust particles high temperature for a long time in the pre-shock region and dust particles are abruptly heated by the gas drag heating in the post-shock region. We have also derived the upper limit of optical depth of the pre-shock region using the radiative diffusion approximation, above which the rapid heating constraint is not satisfied. It is about 1 - 10.Comment: 58 pages, including 5 tables and 15 figures, accepted for publication in The Astrophysical Journa

    Assimilating high-resolution salinity data into a model of a partially mixed estuary

    Get PDF
    [1] A three-dimensional circulation model of the Chesapeake Bay is used to validate a simple data assimilation scheme, using high-resolution salinity data acquired from a ship-towed undulating vehicle (a Scanfish). The simulation period spans the entire year of 1995 during which the high-resolution Scanfish data were available in July and October, lasting a few days each. Since Scanfish data were irregularly distributed in time and space, only salinity fields are nudged in the model for simplicity. Model improvements through data assimilation are evaluated from a pair of experiments: one with data assimilation and one without. Data from scattered Chesapeake Bay Program monitoring stations and a few stations maintained by the National Ocean Service inside the bay are used independently to check the model performance. In general, the simple assimilation scheme leads to visibly improved density structures in the upper and middle reaches of the bay. The improvement in the lower bay is equally pronounced after data assimilation but diminishes in a shorter timescale because of faster flushing from the adjacent coastal ocean. Moderate to weak nudging normally enhances the gravitational circulation. Strong nudging may produce transient overshooting, during which the gravitational circulation is renewed vigorously

    3D MHD Flux Emergence Experiments: Idealized models and coronal interactions

    Full text link
    This paper reviews some of the many 3D numerical experiments of the emergence of magnetic fields from the solar interior and the subsequent interaction with the pre-existing coronal magnetic field. The models described here are idealized, in the sense that the internal energy equation only involves the adiabatic, Ohmic and viscous shock heating terms. However, provided the main aim is to investigate the dynamical evolution, this is adequate. Many interesting observational phenomena are explained by these models in a self-consistent manner.Comment: Review article, accepted for publication in Solar Physic

    Phase transitions and spin-state of iron in FeO at the conditions of Earth's deep interior

    Full text link
    Iron-bearing oxides undergo a series of pressure-induced electronic, spin and structural transitions that can cause seismic anomalies and dynamic instabilities in Earth's mantle and outer core. We employ x-ray diffraction and x-ray emission spectroscopy along with state-of-the-art density functional plus dynamical mean-field theory (DFT+DMFT) to characterize the electronic structure and spin states, and crystal-structural properties of w\"ustite (Fe1x_{1-x}O) -- a basic oxide component of Earth's interior -- at high pressure-temperature conditions up to 140 GPa and 2100 K. We find that FeO exhibits complex polymorphism under pressure, with abnormal compression behavior associated with electron-spin and crystallographic phase transitions, and resulting in a substantial change of bulk modulus. Our results reveal the existence of a high-pressure phase characterized by a metallic high-spin state of iron at about the pressure-temperature conditions of Earth's core-mantle boundary. The presence of high-spin metallic iron near the base of the mantle can significantly influence the geophysical and geochemical properties of Earth's deep interior.Comment: 5 figures, with supplementary material
    corecore